OSMOTIC Pressure

WHAT IS? OSMOTIC PRESSURE

The minimum pressure that stops the osmosis is equal to the osmotic pressure of the solution.

$$\pi = iMRT$$

$$\pi$$
 = Osmotic pressure \mathbf{i} = Van't Hoff factor \mathbf{M} = Molar concentration of solution (mol/L) \mathbf{R} = Ideal gas constant (0.08206 L atm Mol⁻¹ K¹) \mathbf{T} = Temperature in Kelvin (K)

VAN'T HOFF' FACTOR

Colligative properties are directly proportional to the number of mole of solute, dissociation or association may cause some abnormal increase or decrease in the measured values of colligative properties. Van't Hoff factor is a factor that takes into account this abnormal behaviour and can be defined as,

l = Observed magnitude of any colligative property

Normal magnitude of the same colligative property

Since, colligative properties are inversely related to the molar mass of the solute, hence, one can write,

Normal molar mass

Observed molar mass (obtained from a colligative property)

Thus, the value of depends upon the state of solute in the solution. Following cases are possible:

- When, (i = 1) then the solute remains unaffected (i.e., normal) in solution.
- When, // > 1 then the solute undergo dissociation in solution.
- When, (i < 1) then the solute undergo association in solution.

remove.

Part-II

COLORS TEST FLAME

VERY SOFT

- Alkali metals can be easily cut with a knife
- Among all alkali metals lithium is hardest.

ATOMIC SIZE

Size increases down the group due to

STORED IN KEROSENE

Alkali metals react with

air easily to form oxide

are stored in kerosene.

layer therefore they

added extra orbit.

ELECTRONIC CONFIGURATION

- They have one valence shell electron.
- General valence electronic configuration

ELECTROPOSITIVE It is the ability to remove an electron

Anti depressants

USES

Batteries

SODIUM

- Street lamps
- Salt

POTASSIUM

Fertilizers

Atomic Clocks

down the group. CAESIUM

Caesium has the highest electropositive character.

Electropositivity increases

REACTS WITH WATER

- and form hydroxides.
- Don't even dare to go near when

REACTS WITH AMMONIA

On dissolving NH₃ forms Ammoniated cation and electron. Solution turns blue

 $M^+ + \times NH_3 \rightarrow [M (NH_3)_x]^+$ $e^- + y NH_3 \rightarrow [e (NH_3)_y]^-$

caesium reacts with water.

ALKALINE EARTH METALS

ELECTRONIC CONFIGURATION

Valence Electrons

FLAME COLOUR TEST

Group II Element Flame Colour

Beryllium Colourless Magnesium

Colourless Calcium Brick red

Strontium Crimson red

Barium Apple green

Kidney stones generally consist of calcium oxalate. CaC2O4 H2O which dissolves in dilute strong acids but remains insoluble in bases.

They are commonly called alkaline earth metals because their oxides are alkaline in nature and are found in earth's crust.

REACTION WITH WATER

Be does not react even with boiling water and Ba react vigorously even with cold water. Thus increasing order of reactivity with water is

Mg < Cr < Sr < Ba

ATOMIC SIZE

Size increases down the group due to added extra orbit.

ELECTROPOSITIVITY

Strong electropositive elements due to large size, electropositivity increases down the group.

REACTION WITH NITROGEN

These metals react with nitrogen to form nitrides of the types M₃N₂ which are hydrolysed with water to evolve NH₃.

3M + N₂ A M₃N₂

M₃N₂ + 6H₂O 3M(OH)₂ + 2NH₃

BERYLLIUM

Corrosion resistant alloys

STRONTIUM - -

Glass for colour television cathode ray tubes

MAGNESIUM --

Present in chlorophyll, helps in photosynthesis

CALCIUM

USES

Hydrated CaCl₂ used for melting ice on roads

BARIUM

Nuclear Medicine

ALKALI METALS

DIFFERENCE BEINFEN

ALKALINE EARTH METALS

PROPERTIES	ALKALI METALS	ALKALINE EARTH METALS
Physical properties	Soft, Low melting point, Paramagnetic.	Comparatively harder. High melting point, Diamagnetic
Valency	Monovalent	Bivalent
Electropositive nature	More electropositive	Less electropositive
Hydroxides	Strong base, highly soluble and stable towards heat.	Weak base, less soluble and decomposes on heating.
Bicarbonates	These are known in solid state.	These are not known in free state. Exist only in solution
Carbonates	Soluble in water. Do not decomposes on heating (LiCO3 is an exception)	Insoluble in water. Decomposes on heating.
Action of carbon	Do not directly combine with carbon	Directly combine with carbon to form carbides
Solubility of salts	Sulphates, phosphates, fluorides, chromates, oxides etc are soluble in water.	Sulphates, phosphates, fluorides, chromates, oxalates etc are insoluble in water
Reducing power	Stronger as ionization potential values are low and oxidation potential values are high	Weaker as ionization potential values are high and oxidation potential values are low.
Electronic configuration	One electron is present in the valence shell. The configuration is ns ¹ (monovalent)	Two electrons are present in the valence shell. The configuration is ns ² (bivalent)